• 1 / 1 / 211 entry
  • 0 başlık
  • 0.03 incipuan

ian fraiser willis üçüküncü nesil normal

  • 0
    izmirde metro olsa izmirlilerin tamamı
    izban zütüne girsin pampa
    ···
  • 0
    valerie solanas 46 türk erkeğine siktirmiş
    Correlations for heat transfer and pressure drop

    Nomenclature:

    D - Hydraulic diameter
    L - Flow length
    vel - Fluid velocity
    Dens - Density
    CP - Specific heat capacity
    DV - Dynamic viscosity
    KV - Kinematic viscosity = DV/Dens
    TC - Thermal conductivity
    Beta - Thermal expansion coefficient
    T,Surf - Surface temperature
    T,Amb - Ambient temperature
    dT = T,Surf - T,Amb
    Grav - Gravity acceleration
    Re - Reynolds number = vel*D/KV
    Gr - Grashof number = Grav*Beta*abs(dT)*D^3/KV^2
    Pr - Prandtl number = KV*CP/TC
    Ra - Rayleigh number = Gr*Pr
    Nu - Nusselt number = HTC*D/TC
    HTC - Heat transfer coefficient
    rlRough - Relative coarseness
    rFrict - Friction coefficient for fluid flow pressure drop
    Lam - Laminar
    Tr - Transient
    Turb - Turbulent

    General forced convection heat transfer:

    Re > 10000: HTC = HTCTurb = 0.027*(TC/D)*Re^0.8*Pr^(1/3)
    Re < 2300: HTC = HTCLam = 1.86*(TC/D)*Re*Pr*D/L)^(1/3)
    2300 < Re < 10000: HTC = HTCTurb*(1-(1-1.86*(L/D)^(-1/3​)*(2300/Re)^(3/2))

    Laminar forced convection (Kreith & Black):

    Nu = 0.664*sqrt(Re)*Pr^(1/3);

    Turbulent forced convection (Kreith & Black):

    Nu = 0.036*(Re^0.8-23200)*Pr^(1/3);

    Forced convection heat transfer for external cross flow over single pipe (Churchill & Bernstein, 1977):

    Nu = 0.3 + 0.62*Re^(1/2)*Pr^(1/3)/(1+(0.4​/Pr)^(2/3))^0.25*(1+(Re/282000​)^(5/8))^(4/5)

    Turbulent forced convection heat transfer inside smooth pipes (Sieder & Tate, 1936):

    Nu = 0.027*Re^0.8*Pr^(1/3)*(DV/DV,w​all)^0.14, Re > 10,000, 0.5 < Pr < 1E6

    Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):

    Nu = 0.023*Re^0.8*Pr^0.4, dT > 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60

    Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):

    Nu = 0.023*Re^0.8*Pr^0.3, dT < 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60

    General vertical plate free convection (Churchill & Chu, 1975):

    Nu = [0.825 + 0.387*Ra^(1/6)/[1 + (0.492/Pr)^(9/16)]^(8/27)]^2, 0.1 < Ra < 1E12

    Vertical plate laminar free convection (Kreith & Black):

    Nu = 0.59*Ra^(1/4)

    Vertical plate turbulent free convection (Kreith & Black):

    Nu = 0.10*Ra^(1/3)

    Vertical, short pipe external free convection heat transfer (LeFevre & Ede, 1956):

    Nu = 4/3*[7*Ra*Pr/[5*(20 + 21*Pr)]]^(1/4) + 4*(272 + 315*Pr)*L/[35*(64 + 63*Pr)*D]

    Vertical long pipe internal free convection heat transfer (A. Bejan, 1984):

    Nu = Ra/128, L/D > Ra

    Horizontal plate stable free convection (Incropera & DeWitt, 1990):

    Nu = 0.27*Ra^(1/4), 1E5 < Ra < 1E10

    Horizontal plate unstable laminar free convection (Lloyd & Moran, 1974):

    Nu = 0.54*Ra^(1/4), 1E4 < Ra < 1E7

    Horizontal plate unstable turbulent free convection (Lloyd & Moran, 1974):

    Nu = 0.15*Ra^(1/3), 1E7 < Ra < 1E9

    Horizontal pipe external free convection heat transfer (Churchill & Chu, 1975):

    Nu = [0.6 + 0.387*Ra^(1/6)/[1 + (0.559/Pr)^(9/16)]^(8/27)]^2, 1E-5 < Ra < 1E12

    Correlations for pressure drop:
    rlRoughMin interpolated in the following table with respect to the Reynolds number Re:

    Re: 0 20,000 20,000 100,000 1,000,000 10,000,000 100,000,000
    rlRoughMin: 1 1 0.067 0.014 0.0017 0.00019 0.000025

    Smooth pipes: (rlRough < rlRoughMin)

    Re < 2,000: rFrict = 64/Re,
    2,000 < Re < 100,000: rFrict = 0.3164*Re^(-0.25),
    Re > 100,000: rFrict = 0.0032+0.221*Re^(-0.237)

    Coarse pipes: (rlRough > rlRoughMin)

    Re < 2,000: rFrict = 64/Re = rFrict,Lam
    2,000 < Re < 3,000: rFrict,Tr = rFrict,Lam+(rFrict, Turb-rFrict​,Lam)*(0.001*Re-2)
    3,000 < Re < 20,000: rFrict,0 = 0.3164*Re^(-0.25),
    rLam,0 = sqrt(rFrict,0)
    rLam,n = 1/(1.14-0.868589*ln(rlRough+9.​3/(Re*rLam,n-1)))
    rFrict = rLam,n*rLam,n = rFrict, Turb
    Re > 20,000: rLam = 1/(1.14+0.868589*ln(1/rlRough)​)
    rFrict = rLam*rLam
    ···
  • 0
    valerie solanas ağır orospudur
    Correlations for heat transfer and pressure drop

    Nomenclature:

    D - Hydraulic diameter
    L - Flow length
    vel - Fluid velocity
    Dens - Density
    CP - Specific heat capacity
    DV - Dynamic viscosity
    KV - Kinematic viscosity = DV/Dens
    TC - Thermal conductivity
    Beta - Thermal expansion coefficient
    T,Surf - Surface temperature
    T,Amb - Ambient temperature
    dT = T,Surf - T,Amb
    Grav - Gravity acceleration
    Re - Reynolds number = vel*D/KV
    Gr - Grashof number = Grav*Beta*abs(dT)*D^3/KV^2
    Pr - Prandtl number = KV*CP/TC
    Ra - Rayleigh number = Gr*Pr
    Nu - Nusselt number = HTC*D/TC
    HTC - Heat transfer coefficient
    rlRough - Relative coarseness
    rFrict - Friction coefficient for fluid flow pressure drop
    Lam - Laminar
    Tr - Transient
    Turb - Turbulent

    General forced convection heat transfer:

    Re > 10000: HTC = HTCTurb = 0.027*(TC/D)*Re^0.8*Pr^(1/3)
    Re < 2300: HTC = HTCLam = 1.86*(TC/D)*Re*Pr*D/L)^(1/3)
    2300 < Re < 10000: HTC = HTCTurb*(1-(1-1.86*(L/D)^(-1/3​)*(2300/Re)^(3/2))

    Laminar forced convection (Kreith & Black):

    Nu = 0.664*sqrt(Re)*Pr^(1/3);

    Turbulent forced convection (Kreith & Black):

    Nu = 0.036*(Re^0.8-23200)*Pr^(1/3);

    Forced convection heat transfer for external cross flow over single pipe (Churchill & Bernstein, 1977):

    Nu = 0.3 + 0.62*Re^(1/2)*Pr^(1/3)/(1+(0.4​/Pr)^(2/3))^0.25*(1+(Re/282000​)^(5/8))^(4/5)

    Turbulent forced convection heat transfer inside smooth pipes (Sieder & Tate, 1936):

    Nu = 0.027*Re^0.8*Pr^(1/3)*(DV/DV,w​all)^0.14, Re > 10,000, 0.5 < Pr < 1E6

    Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):

    Nu = 0.023*Re^0.8*Pr^0.4, dT > 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60

    Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):

    Nu = 0.023*Re^0.8*Pr^0.3, dT < 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60

    General vertical plate free convection (Churchill & Chu, 1975):

    Nu = [0.825 + 0.387*Ra^(1/6)/[1 + (0.492/Pr)^(9/16)]^(8/27)]^2, 0.1 < Ra < 1E12

    Vertical plate laminar free convection (Kreith & Black):

    Nu = 0.59*Ra^(1/4)

    Vertical plate turbulent free convection (Kreith & Black):

    Nu = 0.10*Ra^(1/3)

    Vertical, short pipe external free convection heat transfer (LeFevre & Ede, 1956):

    Nu = 4/3*[7*Ra*Pr/[5*(20 + 21*Pr)]]^(1/4) + 4*(272 + 315*Pr)*L/[35*(64 + 63*Pr)*D]

    Vertical long pipe internal free convection heat transfer (A. Bejan, 1984):

    Nu = Ra/128, L/D > Ra

    Horizontal plate stable free convection (Incropera & DeWitt, 1990):

    Nu = 0.27*Ra^(1/4), 1E5 < Ra < 1E10

    Horizontal plate unstable laminar free convection (Lloyd & Moran, 1974):

    Nu = 0.54*Ra^(1/4), 1E4 < Ra < 1E7

    Horizontal plate unstable turbulent free convection (Lloyd & Moran, 1974):

    Nu = 0.15*Ra^(1/3), 1E7 < Ra < 1E9

    Horizontal pipe external free convection heat transfer (Churchill & Chu, 1975):

    Nu = [0.6 + 0.387*Ra^(1/6)/[1 + (0.559/Pr)^(9/16)]^(8/27)]^2, 1E-5 < Ra < 1E12

    Correlations for pressure drop:
    rlRoughMin interpolated in the following table with respect to the Reynolds number Re:

    Re: 0 20,000 20,000 100,000 1,000,000 10,000,000 100,000,000
    rlRoughMin: 1 1 0.067 0.014 0.0017 0.00019 0.000025

    Smooth pipes: (rlRough < rlRoughMin)

    Re < 2,000: rFrict = 64/Re,
    2,000 < Re < 100,000: rFrict = 0.3164*Re^(-0.25),
    Re > 100,000: rFrict = 0.0032+0.221*Re^(-0.237)

    Coarse pipes: (rlRough > rlRoughMin)

    Re < 2,000: rFrict = 64/Re = rFrict,Lam
    2,000 < Re < 3,000: rFrict,Tr = rFrict,Lam+(rFrict, Turb-rFrict​,Lam)*(0.001*Re-2)
    3,000 < Re < 20,000: rFrict,0 = 0.3164*Re^(-0.25),
    rLam,0 = sqrt(rFrict,0)
    rLam,n = 1/(1.14-0.868589*ln(rlRough+9.​3/(Re*rLam,n-1)))
    rFrict = rLam,n*rLam,n = rFrict, Turb
    Re > 20,000: rLam = 1/(1.14+0.868589*ln(1/rlRough)​)
    rFrict = rLam*rLam
    ···
  • 0
    yıl olmuş 2012 hala komunist olan var amk
    faşist başbakanı nihat erimi
    vuran cephe bizim parti cephemiz
    ···
  • 0
    yıl olmuş 2012 hala komunist olan var amk
    cüret direniş savaş
    önderimiz dursun karataş
    ···
  • 0
    yıl olmuş 2012 hala komunist olan var amk
    o değil de panpalar

    umudun adı dhkp-c
    ···
  • 0
    yıl olmuş 2012 hala komunist olan var amk
    das kapital okumadan burda ahkam kesenin hariçten gazel okuyanın gelmişini geçmişini yedi ceddini devri devranını izzeti ikrdıbını gibeyim.
    ···
  • 0
    toplanın brazzers var
    Correlations for heat transfer and pressure drop

    Nomenclature:

    D - Hydraulic diameter
    L - Flow length
    vel - Fluid velocity
    Dens - Density
    CP - Specific heat capacity
    DV - Dynamic viscosity
    KV - Kinematic viscosity = DV/Dens
    TC - Thermal conductivity
    Beta - Thermal expansion coefficient
    T,Surf - Surface temperature
    T,Amb - Ambient temperature
    dT = T,Surf - T,Amb
    Grav - Gravity acceleration
    Re - Reynolds number = vel*D/KV
    Gr - Grashof number = Grav*Beta*abs(dT)*D^3/KV^2
    Pr - Prandtl number = KV*CP/TC
    Ra - Rayleigh number = Gr*Pr
    Nu - Nusselt number = HTC*D/TC
    HTC - Heat transfer coefficient
    rlRough - Relative coarseness
    rFrict - Friction coefficient for fluid flow pressure drop
    Lam - Laminar
    Tr - Transient
    Turb - Turbulent

    General forced convection heat transfer:

    Re > 10000: HTC = HTCTurb = 0.027*(TC/D)*Re^0.8*Pr^(1/3)
    Re < 2300: HTC = HTCLam = 1.86*(TC/D)*Re*Pr*D/L)^(1/3)
    2300 < Re < 10000: HTC = HTCTurb*(1-(1-1.86*(L/D)^(-1/3​)*(2300/Re)^(3/2))

    Laminar forced convection (Kreith & Black):

    Nu = 0.664*sqrt(Re)*Pr^(1/3);

    Turbulent forced convection (Kreith & Black):

    Nu = 0.036*(Re^0.8-23200)*Pr^(1/3);

    Forced convection heat transfer for external cross flow over single pipe (Churchill & Bernstein, 1977):

    Nu = 0.3 + 0.62*Re^(1/2)*Pr^(1/3)/(1+(0.4​/Pr)^(2/3))^0.25*(1+(Re/282000​)^(5/8))^(4/5)

    Turbulent forced convection heat transfer inside smooth pipes (Sieder & Tate, 1936):

    Nu = 0.027*Re^0.8*Pr^(1/3)*(DV/DV,w​all)^0.14, Re > 10,000, 0.5 < Pr < 1E6

    Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):

    Nu = 0.023*Re^0.8*Pr^0.4, dT > 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60

    Turbulent forced convection heat transfer inside smooth pipes (Dittus & Boelter, 1930):

    Nu = 0.023*Re^0.8*Pr^0.3, dT < 0, 2500 < Re < 1.24E5, 0.7 < Pr < 120, L/D > 60

    General vertical plate free convection (Churchill & Chu, 1975):

    Nu = [0.825 + 0.387*Ra^(1/6)/[1 + (0.492/Pr)^(9/16)]^(8/27)]^2, 0.1 < Ra < 1E12

    Vertical plate laminar free convection (Kreith & Black):

    Nu = 0.59*Ra^(1/4)

    Vertical plate turbulent free convection (Kreith & Black):

    Nu = 0.10*Ra^(1/3)

    Vertical, short pipe external free convection heat transfer (LeFevre & Ede, 1956):

    Nu = 4/3*[7*Ra*Pr/[5*(20 + 21*Pr)]]^(1/4) + 4*(272 + 315*Pr)*L/[35*(64 + 63*Pr)*D]

    Vertical long pipe internal free convection heat transfer (A. Bejan, 1984):

    Nu = Ra/128, L/D > Ra

    Horizontal plate stable free convection (Incropera & DeWitt, 1990):

    Nu = 0.27*Ra^(1/4), 1E5 < Ra < 1E10

    Horizontal plate unstable laminar free convection (Lloyd & Moran, 1974):

    Nu = 0.54*Ra^(1/4), 1E4 < Ra < 1E7

    Horizontal plate unstable turbulent free convection (Lloyd & Moran, 1974):

    Nu = 0.15*Ra^(1/3), 1E7 < Ra < 1E9

    Horizontal pipe external free convection heat transfer (Churchill & Chu, 1975):

    Nu = [0.6 + 0.387*Ra^(1/6)/[1 + (0.559/Pr)^(9/16)]^(8/27)]^2, 1E-5 < Ra < 1E12

    Correlations for pressure drop:
    rlRoughMin interpolated in the following table with respect to the Reynolds number Re:

    Re: 0 20,000 20,000 100,000 1,000,000 10,000,000 100,000,000
    rlRoughMin: 1 1 0.067 0.014 0.0017 0.00019 0.000025

    Smooth pipes: (rlRough < rlRoughMin)

    Re < 2,000: rFrict = 64/Re,
    2,000 < Re < 100,000: rFrict = 0.3164*Re^(-0.25),
    Re > 100,000: rFrict = 0.0032+0.221*Re^(-0.237)

    Coarse pipes: (rlRough > rlRoughMin)

    Re < 2,000: rFrict = 64/Re = rFrict,Lam
    2,000 < Re < 3,000: rFrict,Tr = rFrict,Lam+(rFrict, Turb-rFrict​,Lam)*(0.001*Re-2)
    3,000 < Re < 20,000: rFrict,0 = 0.3164*Re^(-0.25),
    rLam,0 = sqrt(rFrict,0)
    rLam,n = 1/(1.14-0.868589*ln(rlRough+9.​3/(Re*rLam,n-1)))
    rFrict = rLam,n*rLam,n = rFrict, Turb
    Re > 20,000: rLam = 1/(1.14+0.868589*ln(1/rlRough)​)
    rFrict = rLam*rLam
    ···
  • 0
    karşıyakalı piçler gelsin
    bursayı gibtik ondan geç kaldık panpalar.
    ···
  • 0
    valerie solanas
    sanat düşmanı amcık ağızlı. züt veren radikal feminist.
    ···
  • 0
    valerie solanas hakkında ibretlik tespitim
    valeria amcık ağızlının tekiydi panpalar en sevdiğim ressamı öldürdü kevaşe.
    ···
  • 0
    karşıyakalı piçler gelsin
    eftane züttepenin cenaze namazına katılmayan gerçekten gibtirsin gitsin beyler
    ···
  • 0
    brazzers şifrelerim peynir ekmek gibi
    hadi elinize belinize kuvvet
    ···
  • 0
    brazzers şifrelerim peynir ekmek gibi
    panpalar bu kullanıcı hesaplarını bi deneyin olmazsa yenilerini paylaşıcam.

    Correlations for heat transfer and pressure drop

    Nomenclature:

    D - Hydraulic diameter
    L - Flow length
    vel - Fluid velocity
    Dens - Density
    CP - Specific heat capacity
    DV - Dynamic viscosity
    KV - Kinematic viscosity = DV/Dens
    TC - Thermal conductivity
    Beta - Thermal expansion coefficient
    T,Surf - Surface temperature
    T,Amb - Ambient temperature
    dT = T,Surf - T,Amb
    Grav - Gravity acceleration
    Re - Reynolds number = vel*D/KV
    Gr - Grashof number = Grav*Beta*abs(dT)*D^3/KV^2
    Pr - Prandtl number = KV*CP/TC
    Ra - Rayleigh number = Gr*Pr
    Nu - Nusselt number = HTC*D/TC
    HTC - Heat transfer coefficient
    rlRough - Relative coarseness
    rFrict - Friction coefficient for fluid flow pressure drop
    Lam - Laminar
    Tr - Transient
    Turb - Turbulent
    ···
  • 0
    brazzers şifrelerim peynir ekmek gibi
    kapış kapış gidecek panpalar. hadi toplaşın bakalım.
    ···
  • 0
    bir zamanlar biz de liseliydik ama biz
    @10 dokuz kat tabi panpa sokak arasında elinde yarım ekmekle top sektirdiğin top buydu.
    ···
  • 0
    en iyi mühendislik bölümü hangisi
    bu yazıdan birşey anladıysam makina mühendisiyim aq!

    correlations for heat transfer and pressure drop

    nomenclature:

    d - hydraulic diameter
    l - flow length
    vel - fluid velocity
    dens - density
    cp - specific heat capacity
    dv - dynamic viscosity
    kv - kinematic viscosity = dv/dens
    tc - thermal conductivity
    beta - thermal expansion coefficient
    t,surf - surface temperature
    t,amb - ambient temperature
    dt = t,surf - t,amb
    grav - gravity acceleration
    re - reynolds number = vel*d/kv
    gr - grashof number = grav*beta*abs(dt)*d^3/kv^2
    pr - prandtl number = kv*cp/tc
    ra - rayleigh number = gr*pr
    nu - nusselt number = htc*d/tc
    htc - heat transfer coefficient
    rlrough - relative coarseness
    rfrict - friction coefficient for fluid flow pressure drop
    lam - laminar
    tr - transient
    turb - turbulent

    general forced convection heat transfer:

    re > 10000: htc = htcturb = 0.027*(tc/d)*re^0.8*pr^(1/3)
    re < 2300: htc = htclam = 1.86*(tc/d)*re*pr*d/l)^(1/3)
    2300 < re < 10000: htc = htcturb*(1-(1-1.86*(l/d)^(-1/3)*(2300/re)^(3/2))

    laminar forced convection (kreith & black):

    nu = 0.664*sqrt(re)*pr^(1/3);

    turbulent forced convection (kreith & black):

    nu = 0.036*(re^0.8-23200)*pr^(1/3);

    forced convection heat transfer for external cross flow over single pipe (churchill & bernstein, 1977):

    nu = 0.3 + 0.62*re^(1/2)*pr^(1/3)/(1+(0.4/pr)^(2/3))^0.25*(1+(re/282000)^(5/8))^(4/5)

    turbulent forced convection heat transfer inside smooth pipes (sieder & tate, 1936):

    nu = 0.027*re^0.8*pr^(1/3)*(dv/dv,wall)^0.14, re > 10,000, 0.5 < pr < 1e6

    turbulent forced convection heat transfer inside smooth pipes (dittus & boelter, 1930):

    nu = 0.023*re^0.8*pr^0.4, dt > 0, 2500 < re < 1.24e5, 0.7 < pr < 120, l/d > 60

    turbulent forced convection heat transfer inside smooth pipes (dittus & boelter, 1930):

    nu = 0.023*re^0.8*pr^0.3, dt < 0, 2500 < re < 1.24e5, 0.7 < pr < 120, l/d > 60

    general vertical plate free convection (churchill & chu, 1975):

    nu = [0.825 + 0.387*ra^(1/6)/[1 + (0.492/pr)^(9/16)]^(8/27)]^2, 0.1 < ra < 1e12

    vertical plate laminar free convection (kreith & black):

    nu = 0.59*ra^(1/4)

    vertical plate turbulent free convection (kreith & black):

    nu = 0.10*ra^(1/3)

    vertical, short pipe external free convection heat transfer (lefevre & ede, 1956):

    nu = 4/3*[7*ra*pr/[5*(20 + 21*pr)]]^(1/4) + 4*(272 + 315*pr)*l/[35*(64 + 63*pr)*d]

    vertical long pipe internal free convection heat transfer (a. bejan, 1984):

    nu = ra/128, l/d > ra

    horizontal plate stable free convection (incropera & dewitt, 1990):

    nu = 0.27*ra^(1/4), 1e5 < ra < 1e10

    horizontal plate unstable laminar free convection (lloyd & moran, 1974):

    nu = 0.54*ra^(1/4), 1e4 < ra < 1e7

    horizontal plate unstable turbulent free convection (lloyd & moran, 1974):

    nu = 0.15*ra^(1/3), 1e7 < ra < 1e9

    horizontal pipe external free convection heat transfer (churchill & chu, 1975):

    nu = [0.6 + 0.387*ra^(1/6)/[1 + (0.559/pr)^(9/16)]^(8/27)]^2, 1e-5 < ra < 1e12

    correlations for pressure drop:
    rlroughmin interpolated in the following table with respect to the reynolds number re:

    re: 0 20,000 20,000 100,000 1,000,000 10,000,000 100,000,000
    rlroughmin: 1 1 0.067 0.014 0.0017 0.00019 0.000025

    smooth pipes: (rlrough < rlroughmin)

    re < 2,000: rfrict = 64/re,
    2,000 < re < 100,000: rfrict = 0.3164*re^(-0.25),
    re > 100,000: rfrict = 0.0032+0.221*re^(-0.237)

    coarse pipes: (rlrough > rlroughmin)

    re < 2,000: rfrict = 64/re = rfrict,lam
    2,000 < re < 3,000: rfrict,tr = rfrict,lam+(rfrict, turb-rfrict,lam)*(0.001*re-2)
    3,000 < re < 20,000: rfrict,0 = 0.3164*re^(-0.25),
    rlam,0 = sqrt(rfrict,0)
    rlam,n = 1/(1.14-0.868589*ln(rlrough+9.3/(re*rlam,n-1)))
    rfrict = rlam,n*rlam,n = rfrict, turb
    re > 20,000: rlam = 1/(1.14+0.868589*ln(1/rlrough))
    rfrict = rlam*rlam
    ···
  • 0
    kenan komutanı koruma ve yaşatma
    beni yaz!

    "3 akçe aldı ya çakal!"

    kenan komutan, vefa
    ···
  • +1
    bir zamanlar biz de liseliydik ama biz
    panpaaaaaaaaaaaa

    :(((((((((((((

    http://2.bp.blogspot.com/...UdrgdqwPvw/s400/kames.jpg
    ···
  • 0
    1986 1990 arası doğan panpalar birliği
    http://2.bp.blogspot.com/...UdrgdqwPvw/s400/kames.jpg

    panpaaaaaaaaaaaaaaaaaa

    :(((((((
    ···
  • 0
    1986 1990 arası doğan panpalar birliği
    panpalar beter böceği bildiniz mi?

    http://www.youtube.com/wa...2BzSQ&feature=related
    ···
  • 0
    1986 1990 arası doğan panpalar birliği
    panpa bu çizgi filmi hatırlayan var mı?

    http://www.youtube.com/wa...bru8s&feature=related
    ···
  • 0
    1986 1990 arası doğan panpalar birliği
    panpa bu çizgi filmi hatırlayanınız var mı?

    http://www.youtube.com/watch?v=3JjhQ1Oi_3k
    ···
  • 0
    1986 1990 arası doğan panpalar birliği
    misket sezonundan gazoz kapağı sezonuna ne zaman geçileceğine kimin karar verdiğini hep merak ederdim panpa
    ···
  • 0
    adidas logosu yapabilecek bebişinci
    correlations for heat transfer and pressure drop

    nomenclature:

    d - hydraulic diameter
    l - flow length
    vel - fluid velocity
    dens - density
    cp - specific heat capacity
    dv - dynamic viscosity
    kv - kinematic viscosity = dv/dens
    tc - thermal conductivity
    beta - thermal expansion coefficient
    t,surf - surface temperature
    t,amb - ambient temperature
    dt = t,surf - t,amb
    grav - gravity acceleration
    re - reynolds number = vel*d/kv
    gr - grashof number = grav*beta*abs(dt)*d^3/kv^2
    pr - prandtl number = kv*cp/tc
    ra - rayleigh number = gr*pr
    nu - nusselt number = htc*d/tc
    htc - heat transfer coefficient
    rlrough - relative coarseness
    rfrict - friction coefficient for fluid flow pressure drop
    lam - laminar
    tr - transient
    turb - turbulent

    general forced convection heat transfer:

    re > 10000: htc = htcturb = 0.027*(tc/d)*re^0.8*pr^(1/3)
    re < 2300: htc = htclam = 1.86*(tc/d)*re*pr*d/l)^(1/3)
    2300 < re < 10000: htc = htcturb*(1-(1-1.86*(l/d)^(-1/3)*(2300/re)^(3/2))

    laminar forced convection (kreith & black):

    nu = 0.664*sqrt(re)*pr^(1/3);

    turbulent forced convection (kreith & black):

    nu = 0.036*(re^0.8-23200)*pr^(1/3);

    forced convection heat transfer for external cross flow over single pipe (churchill & bernstein, 1977):

    nu = 0.3 + 0.62*re^(1/2)*pr^(1/3)/(1+(0.4/pr)^(2/3))^0.25*(1+(re/282000)^(5/8))^(4/5)

    turbulent forced convection heat transfer inside smooth pipes (sieder & tate, 1936):

    nu = 0.027*re^0.8*pr^(1/3)*(dv/dv,wall)^0.14, re > 10,000, 0.5 < pr < 1e6

    turbulent forced convection heat transfer inside smooth pipes (dittus & boelter, 1930):

    nu = 0.023*re^0.8*pr^0.4, dt > 0, 2500 < re < 1.24e5, 0.7 < pr < 120, l/d > 60

    turbulent forced convection heat transfer inside smooth pipes (dittus & boelter, 1930):

    nu = 0.023*re^0.8*pr^0.3, dt < 0, 2500 < re < 1.24e5, 0.7 < pr < 120, l/d > 60

    general vertical plate free convection (churchill & chu, 1975):

    nu = [0.825 + 0.387*ra^(1/6)/[1 + (0.492/pr)^(9/16)]^(8/27)]^2, 0.1 < ra < 1e12

    vertical plate laminar free convection (kreith & black):

    nu = 0.59*ra^(1/4)

    vertical plate turbulent free convection (kreith & black):

    nu = 0.10*ra^(1/3)

    vertical, short pipe external free convection heat transfer (lefevre & ede, 1956):

    nu = 4/3*[7*ra*pr/[5*(20 + 21*pr)]]^(1/4) + 4*(272 + 315*pr)*l/[35*(64 + 63*pr)*d]

    vertical long pipe internal free convection heat transfer (a. bejan, 1984):

    nu = ra/128, l/d > ra

    horizontal plate stable free convection (incropera & dewitt, 1990):

    nu = 0.27*ra^(1/4), 1e5 < ra < 1e10

    horizontal plate unstable laminar free convection (lloyd & moran, 1974):

    nu = 0.54*ra^(1/4), 1e4 < ra < 1e7

    horizontal plate unstable turbulent free convection (lloyd & moran, 1974):

    nu = 0.15*ra^(1/3), 1e7 < ra < 1e9

    horizontal pipe external free convection heat transfer (churchill & chu, 1975):

    nu = [0.6 + 0.387*ra^(1/6)/[1 + (0.559/pr)^(9/16)]^(8/27)]^2, 1e-5 < ra < 1e12

    correlations for pressure drop:
    rlroughmin interpolated in the following table with respect to the reynolds number re:

    re: 0 20,000 20,000 100,000 1,000,000 10,000,000 100,000,000
    rlroughmin: 1 1 0.067 0.014 0.0017 0.00019 0.000025

    smooth pipes: (rlrough < rlroughmin)

    re < 2,000: rfrict = 64/re,
    2,000 < re < 100,000: rfrict = 0.3164*re^(-0.25),
    re > 100,000: rfrict = 0.0032+0.221*re^(-0.237)

    coarse pipes: (rlrough > rlroughmin)

    re < 2,000: rfrict = 64/re = rfrict,lam
    2,000 < re < 3,000: rfrict,tr = rfrict,lam+(rfrict, turb-rfrict,lam)*(0.001*re-2)
    3,000 < re < 20,000: rfrict,0 = 0.3164*re^(-0.25),
    rlam,0 = sqrt(rfrict,0)
    rlam,n = 1/(1.14-0.868589*ln(rlrough+9.3/(re*rlam,n-1)))
    rfrict = rlam,n*rlam,n = rfrict, turb
    re > 20,000: rlam = 1/(1.14+0.868589*ln(1/rlrough))
    rfrict = rlam*rlam
    ···
  • daha çok